Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; : e0309822, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2311156

ABSTRACT

Bats are a natural reservoir for many viruses and are considered to play an important role in the interspecies transmission of viruses. To analyze the susceptibility of bat airway cells to infection by viruses of other mammalian species, we developed an airway organoid culture model derived from airways of Carollia perspicillata. Application of specific antibodies for fluorescent staining indicated that the cell composition of organoids resembled those of bat trachea and lungs as determined by immunohistochemistry. Infection studies indicated that Carollia perspicillata bat airway organoids (AOs) from the trachea or the lung are highly susceptible to infection by two different porcine influenza A viruses. The bat AOs were also used to develop an air-liquid interface (ALI) culture system of filter-grown epithelial cells. Infection of these cells showed the same characteristics, including lower virulence and enhanced replication and release of the H1N1/2006 virus compared to infection with H3N2/2007. These observations agreed with the results obtained by infection of porcine ALI cultures with these two virus strains. Interestingly, lectin staining indicated that bat airway cells only contain a small amount of alpha 2,6-linked sialic acid, the preferred receptor determinant for mammalian influenza A viruses. In contrast, large amounts of alpha 2,3-linked sialic acid, the preferred receptor determinant for avian influenza viruses, are present in bat airway epithelial cells. Therefore, bat airway cells may be susceptible not only to mammalian but also to avian influenza viruses. Our culture models, which can be extended to other parts of the airways and to other species, provide a promising tool to analyze virus infectivity and the transmission of viruses both from bats to other species and from other species to bats. IMPORTANCE We developed an organoid culture system derived from the airways of the bat species Carollia perspicillata. Using this cell system, we showed that the airway epithelium of these bats is highly susceptible to infection by influenza viruses of other mammalian species and thus is not a barrier for interspecies transmission. These organoids provide an almost unlimited supply of airway epithelial cells that can be used to generate well-differentiated epithelial cells and perform infection studies. The establishment of the organoid model required only three animals, and can be extended to other epithelia (nose, intestine) as well as to other species (bat and other animal species). Therefore, organoids promise to be a valuable tool for future zoonosis research on the interspecies transmission of viruses (e.g., bat → intermediate host → human).

2.
Viruses ; 12(11)2020 10 23.
Article in English | MEDLINE | ID: covidwho-895404

ABSTRACT

Porcine respiratory coronavirus (PRCoV) infects the epithelial cells in the respiratory tract of pigs, causing a mild respiratory disease. We applied air-liquid interface (ALI) cultures of well-differentiated porcine airway cells to mimic the respiratory tract epithelium in vitro and use it for analyzing the infection by PRCoV. As reported for most coronaviruses, virus entry and virus release occurred mainly via the apical membrane domain. A novel finding was that PRCoV preferentially targets non-ciliated and among them the non-mucus-producing cells. Aminopeptidase N (APN), the cellular receptor for PRCoV was also more abundantly expressed on this type of cell suggesting that APN is a determinant of the cell tropism. Interestingly, differentiation-dependent differences were found both in the expression of pAPN and the susceptibility to PRCoV infection. Cells in an early differentiation stage express higher levels of pAPN and are more susceptible to infection by PRCoV than are well-differentiated cells. A difference in the susceptibility to infection was also detected when tracheal and bronchial cells were compared. The increased susceptibility to infection of bronchial epithelial cells was, however, not due to an increased abundance of APN on the cell surface. Our data reveal a complex pattern of infection in porcine differentiated airway epithelial cells that could not be elucidated with immortalized cell lines. The results are expected to have relevance also for the analysis of other respiratory viruses.


Subject(s)
CD13 Antigens/metabolism , Epithelial Cells/metabolism , Porcine Respiratory Coronavirus/physiology , Receptors, Virus/metabolism , Respiratory Mucosa/virology , Viral Tropism , Animals , Bronchi/metabolism , Bronchi/virology , Cell Differentiation , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/virology , Swine , Trachea/metabolism , Trachea/virology , Virus Internalization , Virus Release , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL